1.2.2. EPREUVE DE MATHEMATIQUES-SERIE A2

REPUBLIQUE GABONAISE DIRECTION DU BACCALAUREAT

2016 - MATHEMATIQUES

Série: A2

Durée : 2 heures

coef: 2

L'usage de la calculatrice est autorisé.

Exercice 1 : Systèmes de numération- Divisibilité. (6 points)

A- Système de numération en base 2.

Les ordinateurs utilisent la numérotation binaire préconisée par Leibniz qui y voyait l'image de la création : l'être et le néant.

Pour écrire un nombre en base 2, les chiffres utilisés sont 0 et 1.

- 1. Ecrire le nombre 92 dans le système binaire.
- 2. Dans le système binaire, un nombre x s'écrit : 110101. Ecrire le nombre x dans le système décimal.

B- Divisibilité dans N.

- 1. Déterminer le PGCD des nombres 1386 et 5148.
- 2. Rendre irréductible la fraction : $\frac{1386}{5148}$
- 3. Kharl, le boulanger, a fabriqué 5148 croissants et 1386 chocolats qu'il doit livrer par paquets en respectant les consignes suivantes :
 - Le nombre de paquets confectionnés doit être le plus grand possible ;
 - Chaque paquet doit comporter le même nombre de croissants et le même nombre de chocolats;
 - Tous les croissants et tous les chocolats doivent être utilisés dans la confection des paquets.
 - a. Déterminer le nombre de paquets que pourra constituer le boulanger Kharl.
 - Déterminer le nombre de croissants et le nombre de chocolats dans chaque paquet.

Exercice 2 : Equations et inéquations dans R. (7 points)

On considère le polynôme P défini par : $P(x) = x^2 - 4x + 3$.

- 1. Résoudre dans \mathbb{R} , l'équation : $x^2 4x + 3 = 0$.
- 2. a. Vérifier que : P(x) = (x-1)(x-3)
 - b. Etudier le signe de P(x) puis, déduire les solutions de l'inéquation $P(x) \ge 0$.
- 3. En s'aidant des questions précédents, résoudre dans \mathbb{R} , les équations et inéquations suivantes :
 - a. $(\ln x)^2 4 \ln x + 3 = 0$;
 - b. $e^{2x} 4e^x + 3 = 0$;
 - c. $(\ln x)^2 4 \ln x + 3 \ge 0$;
 - d. $e^{2x} 4e^x + 3 < 0$.

Exercice 3: Etude d'une fonction exponentielle népérienne. (7 points)

Soit f la fonction définie sur \mathbb{R} par : $f(x) = xe^x$. On note (C_f) sa courbe représentative dans un repère orthonormé (O; I; J) d'unité graphique 1 cm.

- 1. Calculer: $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$.
- 2. Soit f' la dérivée de f sur \mathbb{R} .
 - a. Calculer f'(x) et montrer que : $f'(x) = (x+1)e^x$.
 - b. Justifier que f'(x) < 0 pour tout $x \in]-\infty; -1[$ et f'(x) > 0 pour tout $x \in]-1; +\infty[$ et en déduire le sens de variation de f sur \mathbb{R} .
 - c. Dresser le tableau de variation complet de f sur $\mathbb R$.
- 3. Déterminer une équation de la tangente (T) à (C_f) au point d'abscisse x=0.
- 4. Tracer la courbe (T) et (C_f) dans le repère (O; I; J) d'unité graphique 1 cm.